Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.603
1.
Sci Total Environ ; 932: 172927, 2024 May 06.
Article En | MEDLINE | ID: mdl-38719057

Tire-derived rubber crumbs (RC), as a new type of microplastics (MPs), harms both the environment and human health. Excessive use of plastic, the decomposition of which generates microplastic particles, in current agricultural practices poses a significant threat to the sustainability of agricultural ecosystems, worldwide food security and human health. In this study, the application of biochar, a carbon-rich material, to soil was explored, especially in the evaluation of synthetic biochar-based community (SynCom) to alleviate RC-MP-induced stress on plant growth and soil physicochemical properties and soil microbial communities in peanuts. The results revealed that RC-MPs significantly reduced peanut shoot dry weight, root vigor, nodule quantity, plant enzyme activity, soil urease and dehydrogenase activity, as well as soil available potassium, and bacterial abundance. Moreover, the study led to the identification highly effective plant growth-promoting rhizobacteria (PGPR) from the peanut rhizosphere, which were then integrated into a SynCom and immobilized within biochar. Application of biochar-based SynCom in RC-MPs contaminated soil significantly increased peanut biomass, root vigor, nodule number, and antioxidant enzyme activity, alongside enhancing soil enzyme activity and rhizosphere bacterial abundance. Interestingly, under high-dose RC-MPs treatment, the relative abundance of rhizosphere bacteria decreased significantly, but their diversity increased significantly and exhibited distinct clustering phenomenon. In summary, the investigated biochar-based SynCom proved to be a potential soil amendment to mitigate the deleterious effects of RC-MPs on peanuts and preserve soil microbial functionality. This presents a promising solution to the challenges posed by contaminated soil, offering new avenues for remediation.

2.
Clinics (Sao Paulo) ; 79: 100372, 2024 May 10.
Article En | MEDLINE | ID: mdl-38733688

OBJECTIVE: This study aims to analyze the relationship between the Kelch-like ECH-associated protein 1 (Keap1)/Nuclear factor-erythroid 2-related factor 2 (Nrf2) and Epilepsy (EP), as well as its mechanism of action. METHODS: Thirty Wistar rats were divided into a control group (without treatment), a model group (EP modeling), and an inhibition group (EP modeling + intervention by Keap1/Nrf2 signaling pathway inhibitor ATRA) and subject to Morris water maze experiment. Then, the expression of Oxidative Stress (OS) markers, ferroptosis-associated proteins and Keap1/Nrf2 pathway in rat hippocampus was measured. In addition, rat hippocampal neuronal cell HT22 was purchased and treated accordingly based on the results of grouping, and cell proliferation and apoptosis in the three groups were determined. RESULTS: Compared with rats in the model group, those in the inhibition group showed shorter escape latency and an increased number of platform crossings (p < 0.05). Significant OS and neuron ferroptosis, increased apoptosis rate, elevated Keap1 expression, and decreased Nrf2 expression were observed in the model group compared to the control group (p < 0.05). The inhibition group exhibited notably improved OS and ferroptosis, as well as enhanced neuronal viability (p < 0.05). CONCLUSION: Inhibition of the Keap1/Nrf2 pathway can reverse the OS and neuron viability in EP rats.

3.
Heliyon ; 10(9): e29652, 2024 May 15.
Article En | MEDLINE | ID: mdl-38707449

Background: Current treatments for primary Sjögren's Syndrome (pSS) are with limited effect, partially due to the heterogeneity and uncleared mechanism. Methods: We got GSE40568 (Japan) and GSE40611 (USA), and analyzed them with WGCNA to find key Differentially expressed genes (DEGs) between pSS and healthy salivary glands (SG). Key pSS genes (KPGs) were further selected through 3 machine-learning methods. The expression of KPGs was validated via two other GEO datasets (GSE127952 and GSE154926). Infiltrated immune cells, ceRNA network, and potential compounds were explored. Results: Our study identified 376 DEGs from the pSS patients, with 186 genes located in the "plum2" module, showing the strongest correlation with clinical characteristics. SAMD9 and IFIT3 emerged as KPGs with excellent diagnostic potential. SAMD9 demonstrated close association with immune cell infiltration. We constructed a lncRNA-miRNA-mRNA network comprising 2 KPGs, 12 miRNAs, 124 lncRNAs, and potential therapeutic targets. Conclusion: In the investigation of pSS public datasets, our study revealed two potential critical mediators in the pathological process of pSS salivary glands, namely SAMD9 and IFIT3. Furthermore, we put forth a hypothesis regarding the ceRNA network and made predictions regarding potential therapeutic drugs targeting these two genes.

4.
Int J Paediatr Dent ; 2024 May 09.
Article En | MEDLINE | ID: mdl-38725105

BACKGROUND: Changes in healthy and inflamed pulp on periapical radiographs are traditionally so subtle that they may be imperceptible to human experts, limiting its potential use as an adjunct clinical diagnostic feature. AIM: This study aimed to investigate the feasibility of an image-analysis technique based on the convolutional neural network (CNN) to detect irreversible pulpitis in primary molars on periapical radiographs (PRs). DESIGN: This retrospective study was performed in two health centres. Patients who received indirect pulp therapy at Peking University Hospital for Stomatology were retrospectively identified and randomly divided into training and validation sets (8:2). Using PRs as input to an EfficientNet CNN, the model was trained to categorise cases into either the success or failure group and externally tested on patients who presented to our affiliate institution. Model performance was evaluated using sensitivity, specificity, accuracy and F1 score. RESULTS: A total of 348 PRs with deep caries were enrolled from the two centres. The deep learning model achieved the highest accuracy of 0.90 (95% confidence interval: 0.79-0.96) in the internal validation set, with an overall accuracy of 0.85 in the external test set. The mean greyscale value was higher in the failure group than in the success group (p = .013). CONCLUSION: The deep learning-based model could detect irreversible pulpitis in primary molars with deep caries on PRs. Moreover, this study provides a convenient and complementary method for assessing pulp status.

5.
Chem Commun (Camb) ; 2024 May 10.
Article En | MEDLINE | ID: mdl-38726610

For the first time, a novel donor-acceptor structured COF with excellent photothermal conversion and mono-dispersity in various oils without any further modification is reported; it realized responsive friction reduction, excellent antiwear and long-time lubrication.

6.
Plants (Basel) ; 13(9)2024 May 06.
Article En | MEDLINE | ID: mdl-38732492

Tomato yellow leaf curl virus (TYLCV) is a prominent viral pathogen that adversely affects tomato plants. Effective strategies for mitigating the impact of TYLCV include isolating tomato plants from the whitefly, which is the vector of the virus, and utilizing transgenic lines that are resistant to the virus. In our preliminary investigations, we observed that the use of growth retardants increased the rate of TYLCV infection and intensified the damage to the tomato plants, suggesting a potential involvement of gibberellic acid (GA) in the conferring of resistance to TYLCV. In this study, we employed an infectious clone of TYLCV to inoculate tomato plants, which resulted in leaf curling and growth inhibition. Remarkably, this inoculation also led to the accumulation of GA3 and several other phytohormones. Subsequent treatment with GA3 effectively alleviated the TYLCV-induced leaf curling and growth inhibition, reduced TYLCV abundance in the leaves, enhanced the activity of antioxidant enzymes, and lowered the reactive oxygen species (ROS) levels in the leaves. Conversely, the treatment with PP333 exacerbated TYLCV-induced leaf curling and growth suppression, increased TYLCV abundance, decreased antioxidant enzyme activity, and elevated ROS levels in the leaves. The analysis of the gene expression profiles revealed that GA3 up-regulated the genes associated with disease resistance, such as WRKYs, NACs, MYBs, Cyt P450s, and ERFs, while it down-regulated the DELLA protein, a key agent in GA signaling. In contrast, PP333 induced gene expression changes that were the opposite of those caused by the GA3 treatment. These findings suggest that GA plays an essential role in the tomato's defense response against TYLCV and acts as a positive regulator of ROS scavenging and the expression of resistance-related genes.

7.
Int J Rheum Dis ; 27(5): e15166, 2024 May.
Article En | MEDLINE | ID: mdl-38720417

OBJECTIVES: To identify the effectiveness and safety of inactivated SARS-CoV-2 vaccines in rheumatic and musculoskeletal diseases (RMDs) patients. METHODS: RMD patients with COVID-19 in Jiangsu Province were polled between December 8, 2022, and February 1, 2023. Information on demographics, disease characteristics, antirheumatic drug use, vaccination status and survival state were collected. COVID-19-associated pneumonia was the primary outcome. The effect of COVID-19 immunization on RMD patients was assessed using multivariate logistic regression, and the adverse events (AEs) following vaccination were evaluated. RESULTS: Among 592 RMD patients with COVID-19, 276 (46.6%) individuals experienced COVID-19-associated pneumonia, and 290 (49.0%) patients were injected with inactivated vaccines. In multivariate logistic regression analysis, vaccines reduced the incidence of COVID-19-associated pneumonia, and receiving booster vaccine was an independent protective factor for COVID-19-associated pneumonia in RMD patients (OR 0.64, 95% CI 0.41-0.98, p = .034). In particular, inactivated vaccines have a protective impact on RMD patients with a high risk of developing pneumonia, including those aged 45 years and older (OR 0.53, 95% CI 0.34-0.83), and who have lung involvement (OR 0.43, 95% CI 0.23-0.82). The total AEs rate of vaccines was 13.9% (40/290), only 11 (3.8%) experienced the recurrence or deterioration of RMDs, and no serious AEs occurred. CONCLUSION: Inactivated COVID-19 vaccines were safe and effective in reducing the risk of COVID-19-associated pneumonia of RMD patients in China.


COVID-19 Vaccines , COVID-19 , Musculoskeletal Diseases , Rheumatic Diseases , Vaccines, Inactivated , Humans , COVID-19/prevention & control , COVID-19/epidemiology , Rheumatic Diseases/immunology , Rheumatic Diseases/drug therapy , Rheumatic Diseases/epidemiology , Male , Female , Middle Aged , Retrospective Studies , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/administration & dosage , Musculoskeletal Diseases/diagnosis , Musculoskeletal Diseases/epidemiology , Vaccines, Inactivated/adverse effects , Aged , Adult , SARS-CoV-2/immunology , China/epidemiology , Vaccine Efficacy , Treatment Outcome , Risk Factors
8.
ACS Nano ; 2024 May 08.
Article En | MEDLINE | ID: mdl-38720584

The therapeutic application of mesenchymal stem cells (MSCs) has good potential as a treatment strategy for systemic lupus erythematosus (SLE), but traditional MSC therapy still has limitations in effectively modulating immune cells. Herein, we present a promising strategy based on dexamethasone liposome-integrated MSCs (Dexlip-MSCs) for treating SLE via multiple immunomodulatory pathways. This therapeutic strategy prolonged the circulation time of dexamethasone liposomes in vivo, restrained CD4+T-cell proliferation, and inhibited the release of proinflammatory mediators (IFN-γ and TNF-α) by CD4+T cells. In addition, Dexlip-MSCs initiated cellular reprogramming by activating the glucocorticoid receptor (GR) signaling pathway to upregulate the expression of anti-inflammatory factors such as cysteine-rich secretory protein LCCL-containing domain 2 (CRISPLD2) and downregulate the expression of proinflammatory factors. In addition, Dexlip-MSCs synergistically increased the anti-inflammatory inhibitory effect of CD4+T cells through the release of dexamethasone liposomes or Dex-integrated MSC-derived exosomes (Dex-MSC-EXOs). Based on these synergistic biological effects, we demonstrated that Dexlip-MSCs alleviated disease progression in MRL/lpr mice more effectively than Dexlip or MSCs alone. These features indicate that our stem cell delivery strategy is a promising therapeutic approach for clinical SLE treatment.

9.
Article En | MEDLINE | ID: mdl-38701878

BACKGROUND: Anhedonia, a core symptom of major depressive disorder (MDD), manifests in two forms: anticipatory and consummatory, reflecting a diminished capacity to anticipate or enjoy pleasurable activities. Prior studies suggest that brain-derived neurotrophic factor (BDNF) and interleukin-10 (IL-10) may play key roles in the emergence of anhedonia in MDD. The specific relationships between these biomarkers and the two forms of anhedonia remain unclear. This study investigated the potential links between BDNF, IL-10, and both forms of anhedonia in MDD patients. METHODS: This study included 43 participants diagnosed with MDD and 58 healthy controls. It involved detailed assessments of depression and anxiety levels, anticipatory and consummatory pleasure, cognitive functions, and a broad spectrum of plasma biomarkers, such as C-reactive protein, various interleukins, and BDNF. Using partial correlation, variables related to pleasant experiences were identified. Stepwise multiple linear regression analysis was applied to pinpoint the independent predictors of anhedonia in the MDD group. RESULTS: Demographically, both groups were comparable in terms of age, sex, body mass index, educational year, and marital status. Individuals with MDD displayed markedly reduced levels of anticipatory and consummatory pleasure, higher anxiety, and depression scores compared to healthy controls. Additionally, cognitive performance was notably poorer in the MDD group. These patients also had lower plasma diamine oxidase levels. Analysis linked anhedonia to impaired delayed memory. Regression results identified IL-10 and BDNF as independent predictors of anticipatory and consummatory anhedonia, respectively. CONCLUSION: These findings demonstrate that anticipatory and consummatory anhedonia are influenced by independent factors, thereby providing critical insights into the distinct neuroimmunological mechanisms that underlie various forms of anhedonia. Clinicl Trial Registration Number: NCT03790085.

10.
Int J Rheum Dis ; 27(5): e15164, 2024 May.
Article En | MEDLINE | ID: mdl-38706209

BACKGROUND: JAK inhibitors are well known for the treatment of rheumatoid arthritis (RA), but whether they can be used to treat pulmonary fibrosis, a common extra-articular disease of RA, remains to be clarified. METHODS: A jak2 inhibitor, CEP33779 (CEP), was administered to a rat model of RA-associated interstitial lung disease to observe the degree of improvement in both joint swelling and pulmonary fibrosis. HFL1 cells were stimulated with TGF-ß1 to observe the expression of p-JAK2. Then, different concentrations of related gene inhibitors (JAK2, TGFß-R1/2, and p-STAT3) or silencers (STAT3, JAK2) were administered to HFL1 cells, and the expression levels of related proteins were detected to explore the underlying mechanisms of action. RESULTS: CEP not only reduced the degree of joint swelling and inflammation in rats but also improved lung function, inhibited the pro-inflammatory factors IL-1ß and IL-6, reduced lung inflammation and collagen deposition, and alleviated lung fibrosis. CEP decreased the expression levels of TGFß-R2, p-SMAD, p-STAT3, and ECM proteins in rat lung tissues. TGF-ß1 induced HFL1 cells to highly express p-JAK2, with the most pronounced expression at 48 h. The levels of p-STAT3, p-SMAD3, and ECM-related proteins were significantly reduced after inhibition of either JAK2 or STAT3. CONCLUSION: JAK2 inhibitors may be an important and novel immunotherapeutic drug that can improve RA symptoms while also delaying or blocking the development of associated pulmonary fibrotic disease. The mechanism may be related to the downregulation of p-STAT3 protein via inhibition of the JAK2/STAT signaling pathway, which affects the phosphorylation of SMAD3.


Disease Models, Animal , Down-Regulation , Isoquinolines , Janus Kinase 2 , Lung , Pulmonary Fibrosis , Pyridines , Pyrroles , Signal Transduction , Smad3 Protein , Animals , Smad3 Protein/metabolism , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Janus Kinase 2/metabolism , Janus Kinase 2/antagonists & inhibitors , Phosphorylation , Signal Transduction/drug effects , Lung/drug effects , Lung/metabolism , Lung/pathology , Lung/enzymology , Male , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Humans , Rats, Sprague-Dawley , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/therapeutic use , Cell Line , Protein Kinase Inhibitors/pharmacology , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Arthritis, Experimental/enzymology , Anti-Inflammatory Agents/pharmacology , Rats
11.
Int J Biol Macromol ; 269(Pt 1): 131994, 2024 May 01.
Article En | MEDLINE | ID: mdl-38697431

Nowadays, dye water pollution is becoming increasingly severe. Composite of MXene, ZnS, and chitosan-cellulose material (MX/ZnS/CC) was developed to remove anionic dyes through the synergistic effect of adsorption and photocatalytic degradation. MXene was introduced as the cocatalyst to form Schottky heterostructure with ZnS for improving the separation efficiency of photocarriers and photocatalytic performance. Chitosan-cellulose material mainly served as the dye adsorbent, while also could improve material stability and assist in generation of free radicals for dye degradation. The physics and chemistry properties of MX/ZnS/CC composite were systematically inspected through various characterizations. MX/ZnS/CC composite exhibited good adsorption ability to anionic dyes with adsorption capacity up to 1.29 g/g, and excellent synergistic effects of adsorption and photodegradation with synergistic removal capacity up to 5.63 g/g. MX/ZnS/CC composite performed higher synergistic removal ability and better optical and electrical properties than pure MXene, ZnS, chitosan-cellulose material, and MXene/ZnS. After compounding, the synergistic removal percentage of dyes increased by a maximum of 309 %. MX/ZnS/CC composite mainly adsorbs anionic dyes through electrostatic interactions and catalyzes the generation of •O2-, h+, and •OH to degrade dyes, which has been successfully used to remove anionic dyes from environmental water, achieving a 100 % removal of 50 mg/L dye.

12.
J Psychiatr Res ; 175: 20-28, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38701608

Cell-free DNA (cfDNA) has been found to be elevated in patients with schizophrenia (SZ), potentially derived from activated apoptosis, but the underlying mechanisms remain unknown. Moreover, whether the concentrations of cfDNA are altered with disease stage has not been investigated, which limits its clinical application as an auxiliary diagnostic marker for SZ. Using an improved fluorescence correlation spectroscopy (FCS) method that does not require DNA extraction, we measured the molar concentrations of cfDNA in plasma samples of 191 patients with SZ, 78 patients with mood disorders (MD) and 65 healthy controls (HC). We also analyzed the cfDNA composition from either the nucleus or mitochondria, oxidation markers and biochemical indexes to explore the potential mechanistic associations of the increased cfDNA levels. We found that in SZ patients, the cfDNA levels were significantly increased (P = 0.003) regardless of the different disease stages or antipsychotic medication use. Furthermore, qPCR revealed that cell-free nuclear DNA (cf-nDNA) (P = 0.041) but not cell-free mitochondrial DNA (cf-mtDNA) was elevated in SZ patients. Moreover, decreased SOD activity in SZ patients (P = 0.005) was negatively correlated with cfDNA levels (P = 0.047), and fasting blood glucose was positively correlated with cfDNA levels in SZ patients (P = 0.013). Our study provides evidence to support that the elevated cfDNA may be a convenient, effective and stable trait indicator of SZ. Further analysis showed that it mainly came from nucleus, suggesting increased apoptosis, and potentially related to oxidative stress and high blood glucose levels in patients.

13.
Microbiol Res ; 285: 127748, 2024 May 08.
Article En | MEDLINE | ID: mdl-38735241

The rhizosphere system of plants hosts a diverse consortium of bacteria that confer beneficial effects on plant, such as plant growth-promoting rhizobacteria (PGPR), biocontrol agents with disease-suppression activities, and symbiotic nitrogen fixing bacteria with the formation of root nodule. Efficient colonization in planta is of fundamental importance for promoting of these beneficial activities. However, the process of root colonization is complex, consisting of multiple stages, including chemotaxis, adhesion, aggregation, and biofilm formation. The secondary messenger, c-di-GMP (cyclic bis-(3'-5') dimeric guanosine monophosphate), plays a key regulatory role in a variety of physiological processes. This paper reviews recent progress on the actions of c-di-GMP in plant beneficial bacteria, with a specific focus on its role in chemotaxis, biofilm formation, and nodulation.

14.
Langmuir ; 40(19): 10059-10069, 2024 May 14.
Article En | MEDLINE | ID: mdl-38700229

Due to its ultrahigh theoretical capacitance, vanadium pentoxide (V2O5) is considered to be a valid candidate for advanced supercapacitors. However, because of the low electron/electrolyte transfer rate, the capacitive performance still remains to be improved. In this report, Cu doping is adopted to improve the capacitive performance by a two-steps strategy consisting of microwave-assisted solvothermal and postannealing treatments. The electrochemical results indicate that the Cu doping was beneficial for improving the specific capacitance, extending the potential window, and improving the rate ability and long-term stability of V2O5. Furthermore, the mechanism for the performance improvement is explained in detail by combining theoretical calculation and experiments. The results indicated that, compared with that of undoped V2O5, the larger interplanar spacing, better electrical conductivity, a larger proportion of V3+/V4+, and more abundant oxygen vacancies result in an improved capacitive performance. Our proposed Cu-doped V2O5 (Cu-V2O5) can be used as both a positive electrode and a negative electrode for the assembly of the symmetric supercapacitor, which can be used as an energy storage device for light emitting diode lamps.

15.
Curr Issues Mol Biol ; 46(4): 3108-3121, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38666925

Farnesyl pyrophosphate synthase (FPPS) catalyzes the synthesis of C15 farnesyl diphosphate (FPP) from C5 dimethylallyl diphosphate (DMAPP) and two or three C5 isopentenyl diphosphates (IPPs). FPP is an important precursor for the synthesis of isoprenoids and is involved in multiple metabolic pathways. Here, farnesyl pyrophosphate synthase from Sporobolomyces pararoseus NGR (SpFPPS) was isolated and expressed by the prokaryotic expression system. The SpFPPS full-length genomic DNA and cDNA are 1566 bp and 1053 bp, respectively. This gene encodes a 350-amino acid protein with a predicted molecular mass of 40.33 kDa and a molecular weight of 58.03 kDa (40.33 kDa + 17.7 kDa), as detected by SDS-PAGE. The function of SpFPPS was identified by induction, purification, protein concentration and in vitro enzymatic activity experiments. Structural analysis showed that Y90 was essential for chain termination and changing the substrate scope. Site-directed mutation of Y90 to the smaller side-chain amino acids alanine (A) and lysine (K) showed in vitro that wt-SpFPPS catalyzed the condensation of the substrate DMAPP or geranyl diphosphate (GPP) with IPP at apparent saturation to synthesize FPP as the sole product and that the mutant protein SpFPPS-Y90A synthesized FPP and C20 geranylgeranyl diphosphate (GGPP), while SpFPPS-Y90K hydrolyzed the substrate GGPP. Our results showed that FPPS in S. pararoseus encodes the SpFPPS protein and that the amino acid substitution at Y90 changed the distribution of SpFPPS-catalyzed products. This provides a baseline for potentially regulating SpFPPS downstream products and improving the carotenoid biosynthesis pathway.

16.
PeerJ Comput Sci ; 10: e1844, 2024.
Article En | MEDLINE | ID: mdl-38660146

With the rapid development of societal information, electronic educational resources have become an indispensable component of modern education. In response to the increasingly formidable challenges faced by secondary school teachers, this study endeavors to analyze and explore the application of artificial intelligence (AI) methods to enhance their cognitive literacy. Initially, this discourse delves into the application of AI-generated electronic images in the training and instruction of middle school educators, subjecting it to thorough analysis. Emphasis is placed on elucidating the pivotal role played by AI electronic images in elevating the proficiency of middle school teachers. Subsequently, an integrated intelligent device serves as the foundation for establishing a model that applies intelligent classification and algorithms based on the Structure of the Observed Learning Outcome (SOLO). This model is designed to assess the cognitive literacy and teaching efficacy of middle school educators, and its performance is juxtaposed with classification algorithms such as support vector machine (SVM) and decision trees. The findings reveal that, following 600 iterations of the model, the SVM algorithm achieves a 77% accuracy rate in recognizing teacher literacy, whereas the SOLO algorithm attains 80%. Concurrently, the spatial complexities of the SVM-based and SOLO-based intelligent literacy improvement models are determined to be 45 and 22, respectively. Notably, it is discerned that, with escalating iterations, the SOLO algorithm exhibits higher accuracy and reduced spatial complexity in evaluating teachers' pedagogical literacy. Consequently, the utilization of AI methodologies proves highly efficacious in advancing electronic imaging technology and enhancing the efficacy of image recognition in educational instruction.

17.
BMC Psychiatry ; 24(1): 290, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38632560

BACKGROUND: The diagnosis of adolescent Depressive Disorder (DD) lacks specific biomarkers, posing significant challenges. This study investigates the potential of Niacin Skin Flush Response (NSFR) as a biomarker for identifying and assessing the severity of adolescent Depressive Disorder, as well as distinguishing it from Behavioral and Emotional Disorders typically emerging in childhood and adolescence(BED). METHODS: In a case-control study involving 196 adolescents, including 128 Depressive Disorder, 32 Behavioral and Emotional Disorders, and 36 healthy controls (HCs), NSFR was assessed. Depressive symptoms were measured using the Patient Health Questionnaire-9 (PHQ-9) and anxious symptoms with the Generalized Anxiety Disorder 7-item scale (GAD-7). Pearson correlation analysis determined the relationships between NSFR and the severity of depression in DD patients. Receiver Operating Characteristic (ROC) was used to identify DD from BED integrating NSFR data with clinical symptom measures. RESULTS: The adolescent Depressive Disorder group exhibited a higher rate of severe blunted NSFR (21.4%) compared to BED (12.5%) and HC ( 8.3%). Adolescent Depressive Disorder with psychotic symptoms showed a significant increase in blunted NSFR (p = 0.016). NSFR had negative correlations with depressive (r = -0.240, p = 0.006) and anxious (r = -0.2, p = 0.023) symptoms in adolescent Depressive Disorder. Integrating NSFR with three clinical scales improved the differentiation between adolescent Depressive Disorder and BED (AUC increased from 0.694 to 0.712). CONCLUSION: The NSFR demonstrates potential as an objective biomarker for adolescent Depressive Disorder, aiding in screening, assessing severity, and enhancing insights into its pathophysiology and diagnostic precision.


Niacin , Humans , Adolescent , Depression , Anxiety Disorders/psychology , Case-Control Studies , Biomarkers
18.
ACS Omega ; 9(14): 15915-15934, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38617680

The organic-rich shale of the Wufeng-Longmaxi formation is an important section for shale gas exploration. The traditional univariate or bivariate analysis causes researchers to have great controversy about its enrichment mechanism. This study explores the combination of multiple factor analysis (MFA) and element geochemistry to calculate the contribution rate of a paleoenvironment to organic matter enrichment and clarify the main controlling factors of organic matter enrichment. Research has shown that there is generally high productivity from the Wufeng (O3w)-Longmaxi formation (S1l) deposition. The degree of terrigenous clastic input and weathering during the period of the O3w is relatively low, and sedimentary water restriction is strong, mainly developing an anoxic-dysoxic sedimentary environment. During the deposition of S1l1, the input intensity and weathering of terrigenous debris were slightly enhanced, and the increase of the water column led to the development of an anoxic environment at the bottom of the water layer. During the S1l2+3 period, the degree of terrigenous debris and weathering is the largest, and the high oxygen content of the water column is mainly a normal oxic environment. An MFA calculation shows that the paleoproductivity and paleoredox environment of the organic-rich shale section have the highest contribution rate of about 59.57% to the enrichment of organic matter, which is higher than that of paleoclimate conditions and terrigenous clastic input, indicating that the enrichment of organic matter is mainly controlled by paleoproductivity and the preservation environment. This study provides a basis for the application of MFA in element geochemistry and can serve as a model for other studies.

19.
Br J Pharmacol ; 2024 Apr 21.
Article En | MEDLINE | ID: mdl-38644540

BACKGROUND AND PURPOSE: White adipose tissue (WAT) is involved in rheumatoid arthritis (RA). This study explored its potential as an antirheumatic target. EXPERIMENTAL APPROACH: WAT status of healthy and adjuvant-induced arthritis (AIA) rats were compared. The contribution of WAT to RA pathology was evaluated by pre-adipocyte transplant experiments and by dissecting perirenal fat pads of AIA rats. The impact of RA on WAT was investigated by culturing pre-adipocytes. Proteins differentially expressed in WAT of healthy and AIA rats were identified by the UPLC/MS2 method. These together with PPARγ siRNA and agonist were used to treat pre-adipocytes in vitro. The medium was used for THP-1 monocyte culture. KEY RESULTS: Compared with healthy controls, AIA WAT was smaller but secreted more leptin, eNAMPT, MCP-1, TNF-α, and IL-6. AIA rat pre-adipocytes increased the levels of these adipokines in healthy recipients. RA patients' serum induced a similar secretion change and impaired differentiation of pre-adipocytes. Adipectomy eased AIA-related immune abnormalities and arthritic manifestations. Hepatokines PON1, IGFBP4, and GPIHBP1 were among the differential proteins in high levels in RA blood, and induced inflammatory secretions by pre-adipocytes. GPIHBP1 inhibited PPARγ expression and caused differentiation impairment and inflammatory secretion by pre-adipocytes, a similar outcome to PPARγ-silencing. This endowed the cells with an ability to activate monocytes, which can be abrogated by rosiglitazone. CONCLUSION AND IMPLICATIONS: Certain hepatokines potentiate inflammatory secretions by pre-adipocytes and expedite RA progression by inhibiting PPARγ. Targeting this signalling or abnormal WAT secretion by various approaches may reduce RA severity.

20.
Bone Res ; 12(1): 23, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38594236

Bone tissue renewal can be enhanced through co-transplantation of bone mesenchymal stem cells (BMSCs) and vascular endothelial cells (ECs). However, there are apparent limitations in stem cell-based therapy which hinder its clinic translation. Hence, we investigated the potential of alternative stem cell substitutes for facilitating bone regeneration. In this study, we successfully prepared cell membrane vesicles (CMVs) from BMSCs and ECs. The results showed that BMSC-derived cell membrane vesicles (BMSC-CMVs) possessed membrane receptors involved in juxtacrine signaling and growth factors derived from their parental cells. EC-derived cell membrane vesicles (EC-CMVs) also contained BMP2 and VEGF derived from their parental cells. BMSC-CMVs enhanced tube formation and migration ability of hUVECs, while EC-CMVs promoted the osteogenic differentiation of hBMSCs in vitro. Using a rat skull defect model, we found that co-transplantation of BMSC-CMVs and EC-CMVs could stimulate angiogenesis and bone formation in vivo. Therefore, our research might provide an innovative and feasible approach for cell-free therapy in bone tissue regeneration.


Endothelial Cells , Osteogenesis , Rats , Animals , Bone Regeneration , Bone and Bones , Cell Membrane
...